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On statistical aspects of deterministic tree-like fractals
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Abstract. We prove convergence of the partition function of skewed mass distribution for a
class of “finite type’ tree-like fractals,

1. Introduction

In a previous paper [10], a detailed study of a deterministic branching process was carried
out. The point of view developed there was multifractal analysis of singular measures
generated by asynchronous splitting on a tree. In that model, every individual in the
cascade had its own ‘internal splitting time’, and no ‘sterility” was allowed. Thermodynamic
formalism applied well to this special case, in the sense that renormalization of the partition
function was valid for such trees. The ideas used there stem from the theory of deterministic
branching processes [8, 9, 16].

This situation is characteristic of self-similar Cantor sets in the sense of [15], where
‘finite-type’ (or periodic in the sense of [11]} tree structures associated with irreducible
transfer matrices are considered in detail (see also {6]). Care is vital when more general
structures [1, 11] are considered.

The problem we want to discuss here is the following: assume that an initial individual
of unit mass is split into M sub-individuals, each of them receiving from its ancestor the
sub-mass 5r; (j = 1, ..., M). Assume that two kinds of offspring are now available,
namely )

(i) Those which will repeat the multiplicative programme of their ancestor at some (integer)
instants.
(i) Those (sterile) which will not breed.

For those populations, we ask the following questions:

(i) What is the mass distribution of such populations, for large n?

(ii} In what sense does the thermodynamic formalism apply to this new sitvation, in
particular does a thermodynamic limit exist?

(iii) What are the natural heterogeneity characteristics of the mass distribution for such
trees?

The purpose of this paper is to answer these questions.
The peculiarities of this last model, compared with the ones of [6, 15], basically rely
upon the fact that, although one remains in the ‘finite type’ case, the associated transfer
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matrix is no longer irreducible, leading to results probably characteristic of this situation.
Also, this model appears interesting so far as the understanding of ‘tree-like fractal’ is
concerned, by which we mean that all scales, from macroscopic to microscopic, are present.

2. Definition of the structure

Let us define precisely the structure of interest. At time n = 0, some initial individual
generates M offsprings. Among these M sons

o a (k=1...K") will wait k time units before repeating the multiplicative program of
their ancestor (K integer).
o D of them (D integer) will not breed.

Let
K+
A=) a (1)
k=1
As a consequence A + D = M. We also need to introduce
K_ :=inf{k : ap # 0} 2

This can be nicely illustrated by the following generator:

A=3 D=2

for whichg; =1, 22 =2, 23 =0, D=2 KT =2, K_=1.

Infinite branches represent the sterile individuals, while dotted ones repeat their
ancestor’s growth program. Note that we use the following useful convention: we order
the individuals in such a way that the first to breed occur first, followed by the sterile ones.

3. The partition function of the mass distribution

3.1. Partition function

Assume that an individual of unit mass splits into M offsprings, each of them receiving the
mass m; >0, (fj=1...M and E}L 7; = 1). The mass splitting process is then iterated
as explained in section 2.
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From the point of view of statistical physics, all information on the mass distribution is
contained in the partition function [6]

Ny
YO =) (3)
i=1

where N denotes the total number of individuals in this population at time #n, both sterile
and productive, and g; is the mass naturally affected to the path 7 in our tree, ie.
40,
i = Hl‘fjp(f) 4
p=1
with p(f) € {1,..., py-(n)} the individual’s generation number (i.e. the number of its
ancestors). In this expression, py (n) :==n/K_ if n/K_ is an integer, p,.(n) :=[n/K_]1+1
otherwise. Also, (7;qy, ..., s Jp() € {L...., M} p € {1,..., p(i)} is the natural
‘code’ for i.
Letting N; (p) be the amount of individuals among the N with generation number p,
we observe that in the special case 7; = 1/M, j =1, ..., M, then ¥;(A) reads, for real A

Ny - Pl
Y=Y Y M =" MPNXp) ©)
p=l i=l p=l

i.e. is the generating function for N} (p). Therefore, for any individual in this particular
tree the knowledge of its generation number, say p, suffices to determine its mass, namely
M—P,

For the more general mass splitting process considered in this section, in order to
determine the mass of a particular cylinder, one also needs to know the ‘history” of the
embranching. .

We now come to the problem of computing ¥(A). Fork=1,..., K™, take

A _
@) =Y Tygp=iyrr} (6)
J=1
M .
D = ('Z z}.0.. .0) a Kt vector ) )
=At1

(where the symbol d(;) denotes the depth of branch j € {1, ..., A} of the generator).
Define the Kt x K* matrix

1 ... 0
= | B0 @®
i 0 ... 0|
and the (K+ + 1) x (KT + 1) and (2K* + 2) x (2K + 2) matrices
o [ A, O A0 )
A)"__DA 0] R}"_[A,x I:|' (4]
Let R’ denote the 2K+ + 2 vector
] . .
R .—(1.“1,\_}{?‘;|0;;0, ? ) {10y
K+
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and X} the K+ + 1 vector
XE =(1;0...0;0). . (11)
K+

Using this notation, we have the following results.

Theorem 1. ¥r}(3) as given by (3) satisfies yr; (0) = N}, the number conservation equation,
¥ (1) = 1, the mass conservation equation, and

Y5 = (X, X5)
Y1 () 1= 8, % (V) (12)
YA = RV, (0.

Proof. In order to take into account the sterile individuals, one needs to work on the
cumulative process

Xa() = Xn(d) (13)

m<n

where X, () is the K* + 1 vector solution to

Xnp1(A) = A Xa(A) . - (14)
Observing that

(R = Xn () + A Xa () (1s)
and defining the 2K+ -2 column vector ¥,(A) by

Yi () = (X0, X)) (16)

one obtains the recurrence for ¥, (1) in theoreni 1, Picking up those sterile elements that
remain behind, and adding up those living at the current instant # allows to build the quantity
¥ () of interest. This justifies the choice of R. O

Corollary 1. y¥(A) as given by (3) is the solution to the recurrent equation, for real A

M
Vi = w309+ (L7 1)

= amn
B =1
Proof. This comes directly from theorem 1 and the immediate identity
M
RNy =R + (En; - 1)71‘0 (18)
j=1

with R := (1;0...;0). O



Statistical aspects of deterministic tree-like fractals . - 1195

3.2, Asymptotics

We now want to derive the asymptotic behaviour of ¢F(A) for large n. As 1s shown
in corollary 1, one needs first to compute the (1, 1) term in A} as given-by (8). Let
za(A} := (AD)1,1. We have the following lemma.

Lemma 1. z,()) is the solution of
CZy()y =(1,0,...,00
Zp1(A) = ArZ,(2) (19)
mAy=(,0,...,00Z,(3).
Let ce(A) (defined for real 1) be the positive real, strictly decreasing and strictly dominant

eigenvalue of the primitive matrix A, satisfying ¢(0) = ¢ and lim) _, 100 ®(3) = 0. Then
the s-transform Z; (s)of the series ((z,(2))azo is well-defined, and provided that 5 > «(A)

. ) ) ' - -1
H(s) = Zzn(k)s"" = ( ES Eﬂ[d(.n_ﬂﬂ’ ) B (20)

220 J=1

Proof. The alternative repreéentation to (19) is tl{e immediate renewal equation (for » integer)

. K+ A ' -
Zn(A) = Z(‘O X Bigizay + (Z H[dg):k]?f}‘) Zn-k{A) l[k<n]). Zo(A) =1. - 2D
k=1 =1, - i i .

Premultiplying this equation by s~ and summing up over n gives the announced result.
The announced proterties of a() have been derived in [15]. The convergence domain of
{20) is straightforward. O

‘We now want to compute, for 5 > asil)

Fuls) =Y vr0ys ' 22)

nz0

We have the foolowing lemma,

Lemma 2. Provided that 5 >-a()A)

. 1 M | K A -1
gf);“(s) = T—1 (S - (1 - Z:JI'}') (1 - ZS_R' Z ]l[d(j)gk]J'I'}') ) (23)
k=1 =l

J=1

Proof. This comes directly from corollary 1 and lemma 1. 7 ol

Theorem 2. The limit lim,;—.co ¢, (A)-of the partition function (3) exists provided A > 1,
and is

Veolh) 2= (_;H )(1 - Z’f ) | 24)

This last convergence is uniform.
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Progf. From. lemmas 1 and 2 and from the Abelian theorem
Y% = lim (s — DES).- (25)

From coroliary 1

M
PO — Ve () = (1 -y :z}) 2(X) = wa(h) . (26)
j=t
As a consequence of Frobenins’ theorem, we see that w, () is positive, dominated by
(1 — sup n',-) z.(1M) = Ca(lT)" 27
F=laM

which is a geometrical convergent series («(11) < 1). Therefore w,(X) is convergent, and
from Weierstrass® criterion ¥ (A), A > 1, is uniformly convergent. O

Comments. The limit histogram (24) is independent of the actual values of the lifetimes of
individuals in the generator, which can therefore, from this point of view, be set to one.
Thus these models belong to a same class parametrized by A, D and the mass fractions
which deserve estimation for practical purposes.

It is indeed of vital interest in physics to derive the actual procedure one would go
through to decide whether a given distribution belongs to our model class. Although this
appears to be a very complex question, let us here advance some arguments in this direction
that are not intended in any way to close the subject. First, define the m-order cutset
{approximation} of the theoretical histogram (24) to be

W= > (1 B (ZA:”} )"') (1 B ,Z:n: W})—l

F=A41 J=1
M m—1 . A ki
- YAy x (4. e
J=A+1 =0 Gy kaS0TE K=y
Take
{(A+k—1)
{Ade =—a-n | T : (29)

Then for such truncated distributions, the theoretical number of distinct peaks is clearly

=2 (A Al
Pl'(m)=D(E (k!}k)+ {A)m—t

pard (m — !

_ (A+m=D! (A+m-—2)

T Am-2  (A—-Dim-—-1)" (30)
and the total numbers of peaks for m = 2 is
= k -1 A" -1 1
Nr(m)=D(;A )+A =D———+4"". 31)

This situation should be compared with any experimental histogram, where an Ng-sample
is considered up to the precision £ of the measurements, leading to an experimental number
Py of distinct peaks. As a first step, one may search the combination of parameters A = A%,
D = D*, m = m* for which (P, N7, m) and (Pg, Ng, &) fit the best, decreasing &, i.e.
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taking finer scales into consideration to see how the peaks rearrange and appear in the various
histograms, There remains to determine the best set of parameters (7;);=1,.__ A=+ D), & (the
unit mass) explaining the observed histogram, for example fitting the moments of both
theoretical and experimental approximate histograms.

4. Renyi’s entropy of the mass dis¢ribution and related problems

Recalling the mass partition function is ¥;(A), and defining the free energy as

Fr(0) = —log, ¥ (1) . : (32
Introducing the probability Gibbs’ A-measure
Ny -1
Ga (i) = (u(i)) (Z #i-‘) (33)
i=1
one obtains
N*
LAy =(FYR) =- Z G.() log, p(i) . (34)
In particular, for 1 <i < N}
Goli) = N:_I G1(i) = pu(d) ' (35)

and I*(1) is the Shannon entropy of (). The quantity I} (A)is a measure of the amount of

missing information for an observer who, ignoring the ‘true’ distribution G, (f}, decides to

affect his own guess G1(i) = u(f). The quantity is often called the imprecision function [7].
Now introducing Renyi’s entropy function [61

$00 1= 5 B =~ logy Y300 | 6o
and noting that the Shannon entropy is
N*
L")y =501 = Zﬂ(z)logm 20 (37

one obtains

(S0) = U ) — S50

1
=1 [y (A — Ly (A7) — (S5() — S; (A" N]. (38)
In this expression, one recognizes Kullback’s information function
K20 =TI — Ip(1%). (39)

Theorem 2 therefore allows one to compute all these limiting quantities as measures of the
anisotropy of the mass distribution in the tree under study.
In particular, it can readily be shown that the limiting behaviour of the Shannon entropy

SH(1*) is

M -1
Jim §5(%) = 55,07 = —(}: 7; log, nj)( > :r,—) (40)
J

=1 j=A+1
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5. Comments and conclusions

For a deterministic branching tree with sterile individuals, the formalism of the partition
function has been shown to apply, provided ore keeps track of these individuals (with
their mass). In this last situation, the partition function itself has been shown to possess a
limiting behaviour, thereby making various asymptotic measures of the anisotropy of the
mass distribution in such trees meaningful. The populations under study in this paper present
the main advantage of possessing a large scale of mass distribution of their constituent
elements, from macroscopic to microscopic. They should therefore serve as generic models
of various natural phenomena (think of the size distribution of pebbles on a beach, galaxy
clusters, porous media,. . .). This last property also suggests that we should call such objects
‘tree-like fractals’.

These facts shonld be compared with the ones normally in vogue, in the overlooked field
of multifractal analysis of singular measures [1, 2, 3, 5, 10, 12, 14, 15]. Intimately associated
with these ideas is the multiplicative cascade, as nicely illustrated by multinomial [5] or
more general measures [10]. Normally (i.e. except in the case of advanced multifractals,
be they random or left-sided [13]), using box-counting arguments, the partition function
itself has no limiting behaviour. Rather, some sort of ‘thermodynamical limit’ is known
to exist, leading to a rescaled uniform partition function [2]. This fact, together with large
deviations arguments [1, 4, 5], allows in the “finite type’ cases to introduce the notion of
the dimension spectrum [3] for these self-similar multifractal measures, which embodies all
the asymptotic statistics of Lipschitz-Holder exponents for the limit elements.

No such things are meaningful for the multiplicative cascades under study in this paper,
i.e. no renormalization of the partition function is valid; the measures are therefore not
stricly self-similar and this is the meaning of the term ‘tree-like fractal” introduced before.
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