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On statistical aspects of deterministic tree-like fractals 

Thieny Huillett and Bemard Jeannet 
LIMHP-CNRS, Institut Galilee, Paris XIU, Avenue I B Cl&“, 93430 Villetaneuse, France 

Reeeived 11 January 1993, in final form 8 September 1993 

Abshact We prove convergence of the partition function of skewed mass distribution for a 
class of ’finite type’ tree-like fractals. 

1. Introduction 

In a previous paper [lo], a detailed study of a deterministic branching process was carried 
out. The point of view developed there was multifractal analysis of singular measures 
generated by asynchronous splitting on a tree. In that model, every individual in the 
cascade had its own ‘internal splitting time’, and no ‘sterility’ was allowed. Thermodynamic 
formalism applied well to this special case, in the sense that renormalization of the partition 
function was valid for such trees. The ideas used there stem from the theory of deterministic 
branching processes [8, 9, 161. 

Thii situation is characteristic of self-similar Cantor sets in the sense of 1151, where 
‘finite-type’ (or periodic in the sense of [ll]) tree structures associated with irreducible 
transfer matrices are considered in detail (see also [6]). Care is vital when more general 
structures [l, 111 are considered. 

The problem we want to discuss here is the following: assume that an initial individual 
of unit mass is split into M sub-individuals, each of them receiving from its ancestor the 
sub-mass nj ( j  = 1, . . . , M). Assume that two kinds of offspring are now available, 
namely 

(i) Those which will repeat the multiplicative programme of their ancestor at some (integer) 

(ii) Those (sterile) which will not breed. 

For those populations, we ask the following questions: 

(i) What is the mass distribution of such populations, for large n? 
(ii) In what sense does the thermodynamic formalism apply to this new situation, in 

(iii) What are the natural heterogeneity characteristics of the mass distribution for such 

instants. 

particular does a thermodynamic limit exist? 

trees? 

The purpose of this paper is to answer these questions. 
The peculiarities of this last model, compared with the ones of [6, 151, basically rely 

upon the fact that, although one remains in the ‘finite type’ case, the associated transfer 
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matrix is no longer irreducible, leading to results probably characteristic of this situation. 
Also, this model appears interesting so far as the understanding of 'treelike fractal' is 
concemed, by which we mean that all scales, from macroscopic to microscopic, are present. 

T Huillet and B Jeanne1 

2. Definition of the structure 

Let us define precisely the structure of interest. At time n = 0, some initial individual 
generates M offsprings. Among these M sons 

ak (k = I . .  . K') will wait k time units before repeating the multiplicative program of 
their ancestor (K+ integer). 
D of them ( D  integer) will not breed. 

Let 

As a consequence A + D = M. We also need to introduce 

K- := inf{k : ak # 0) 

This can be nicely illustrated by the following generator: 

n = O  

n = l  

n = 2  

n = 3  

4 c - 
A = 3  D = 2  

for which a, = 1, uz = 2, a3 = 0, D = 2, K' = 2, K- = 1. 
Infinite branches represent the sterile individuals, while dotted ones repeat their 

ancestor's growth program. Note that we use the following useful convention: we order 
the individuals in such a way that the first to breed occur first, followed by the sterile ones. 

3. The partition function of the mass distribution 

3.1. Partition function 

Assume that an individual of unit mass splits into M offsprings. each of them receiving the 
mass zj z 0, (j = 1 . . . M and cj=, zj = 1). The mass splitting process is then iterated 
as explained in section 2. 

M 
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From the point of view of statistical physics, all information on the mass distribution is 
contained in the partition function [6] 

N; 
@:(A) := P! (3) 

i= l  

where N; denotes the total number of individuals in this population at time n,  both sterile 
and productive, and pi is the mass naturally affected to the path i in our tree, i.e. 

with p ( i )  E [ I ,  ..., p+(n)}  the individual’s generation number (i.e. the number of its 
ancestors). In this expression, p+(n)  := n / K -  i f n / K -  is an integer, p+(n) := [ n / K - ]  + 1 
otherwise. Also, (zjl(;), . . . , zjp(i)), jp(i) E (1, . . . , M } ,  p E ( 1 , .  . . , p ( i ) )  is the natural 
‘code’ for i. 

Letting N,(p )  be the amount of individuals among the N; with generation number p ,  
we observe that in the special case. nj = 1 / M ,  j = 1,. . . , M ,  then @;(A) reads, for real A 

i.e. is the generating function for N,(p) .  Therefore, for any individual in this particular 
tree the knowledge of its generation number, say p ,  suffices to determine its mass, namely 
M-P. 

For the more general mass splitting process considered in this section, in order to 
determine the mass of a particular cylinder, one also needs to know the ‘histov’ of the 
embranching. 

We now come to the problem of computing @:(I.). For k = 1, . . . , K+, take 

(where the symbol d ( j )  denotes the depth of branch j E (1, . . . , A} of the generator). 
Define the K+ x K+ matrix 

and the (K+ + 1) x (K+ + 1 )  and (2K+ + 2)  x (2K+ + 2) matrices 

Let R* denote the 2K+ + 2 vector 
R1:=(l ... 1 ;  0 I O  ... 0;JJ  -v- 

K+ I K+ 1 
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and Xk the Kt + 1 vector 
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x:, := (1; 0.. .o; 0). - 
K+ 

Using this notation, we have the following results. 

Theorem 1. @;(A) as given by (3) satisfies @;(O) = N;, the number conservation equation, 
$r;(l) = 1, the mass conservation equation, and 

ProoJ In order to take into account the sterile individuals, one needs to work on the 
cumulative process 

- 
Xn@) := X&) 

m<n 

where X,,(A) is the K+ + 1 vector solution to 

one obtains the recurrence for Y,(A) in theorem 1. Picking up those sterile elements that 
remain behind, and adding up those living at the current instant It allows to build the quantity 

0 @;(A) of interest. This justifies the choice of R. 

Corollary I. @;(A) as given by (3) is the solution to the recurrent equation, for real A 

Proo$ This comes directly from theorem 1 and the immediate identity 
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3.2. Asymptotics 

We now want to derive the asymptotic behaviour of @;(A) for large n. As is shown 
in corollary 1, one needs first to compute the (1, 1) term in A! as given~by (8). Let 
zn(A) := (A;)IJ. We have the following lemma 

Let a(A)  (defined for real A) be the positive real, strictly decreasing and strictly dominant 
eigenvalue of the primitive matrix AA, satisfying a(0) = (Y and Iimk++- ( ~ ( 2 . )  = 0. Then 
the s-transform ?&@)of the series ( ( Z , ( A ) ) ~ ~ O  is well-defined, and provided that s > a@)  

Proof The altgnative representation to (19) is the immediate renewal equation (for n integer) 

Premultiplying this equation by s-" and summing up over n gives the announced result. 
The announced proterties of a(A) have been derived in [15]. The convergence domain of 
(20) is straightforward. 0 

We now want to compute, for s 5 a(A) 

&(s) := @;(A) s-" . (274 
I220 

We have the foolowing lemma. 

Lemma 2. Provided that s xa(A)  

Proof This comes directly from corollary 1 and lemma 1. 13 

Theorem 2. The limit limnd,p;(A)~of the partition function (3) exists provided A > 1, 
and is 

This Last convergence is uniform. 
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ProoJ From. lemmas 1 and 2 and from the Abelian theorem 
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+;(A) = lim (s - I)&(s). 
S-tW 

From corollary 1 

As a consequence of Frobenius' theorem, we see that w.(A) is positive, dominated by 

1 - sup Jrj zn(l+) = Ccu(l+)" 0 j=I...M 

which is a geometrical convergent series (a(1+) < 1). Therefore w&) is convergent, and 
U 

Comments. The limit histogram (24) is independent of the actual values of the lifetimes of 
individuals in the generator, which can therefore, from this point of view, be set to one. 
Thus these models belong to a same class parametrized by A, D and the mass fractions 
which deserve estimation for practical purposes. 

It is indeed of vital interest in physics to derive the actual procedure one would go 
through to decide whether a given distribution belongs to our model class. Although this 
appears to be a very complex question, let us here advance some arguments in this direction 
that are not intended in any way to close the subject. First, define the m-order cutset 
(approximation) of the theoretical histogram (24) to be 

from Weierstrass' criterion +.,*(A), h > 1, is uniformly convergent. 

Take 
(A + k - l)! 

(A)k := 
( A  - l)! . 

Then for such truncated distributions, the theoretical number of distinct peaks is clearly 

(A + m - 2)! (A + RI -2)!  
= D  + A!(m - 2)! (A - l)!(m - l)! . 

and the total numbers of peaks for m 2 is 

This situation should be compared with any experimental histogram, where an NE-sample 
is considered up to the precision E of the measurements, leading to an experimental number 
PE of distinct peaks. As a first step, one may search the combination of parameters A = A*, 
D = D', m = ma for which (PT, NT, m) and (PE. NE,  E )  fit the best, decreasing E ,  i.e. 
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taking finer scales into consideration to see how the peaks rearrange and appear in the various 
histograms. There remains to determine the best set of parameters (x j ) j=~ .  ....( A.+D.), p (the 
unit mass) explaining the observed histogram, for example fitting the moments of both 
theoretical and experimental approximate histograms. 

4. Renyi's entropy of the mass distribution and related problems 

Recalling the mass partition function is @:(A), and defining the free energy as 

F,(A) := -log, @:(A). (32) 
Introducing the probability Gibbs' A-measure 

one obtains 

N.' 
Z;(A) := (F;)'(A) = - GA(i )  log, p ( i )  

i=I 

(33) 

(34) 

In particular, for 1 < i < N: 

G,(i) = Nf-' G I G )  =Ai) (35) 
and Z:(l) is the Shannon entropy of p( i ) .  The quantity Z;(A)is a measure of the amount of 
missing information for an observer who, ignoring the 'true' distribution Gi( i ) ,  decides to 
affect his own guess G l ( i )  = p(i) .  The quantity is often called the imprecision function 171. 

Now introducing Renyi's entropy function [61 
1 1 

S,'(A) := - F,*(A) = --log, @,*(A) 
A -  1 A -  1 

and noting that the Shannon entropy is 

one obtains 
1 

A -  1 
($)'(A) =.- [Z,'(A) - S;(A)l 

(38) -~ - [(Z;(A) - 1;(1+)) - (S;(A) - S.*(lt))l. 

K,*(A) :=.I,*@) - Z;(lt). (39) 

A -  1 
In this expression, one recognizes Kullback's information function 

Theorem 2 therefore allows one to compute all these limiting quantities as measures of the 
anisotropy of the mass distribution in the tree under study. 

In particular, it can readily be shown that the limiting behaviour of the Shannon entropy 
S,'(1+) is 
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5. Comments and conclusions 

For a deterministic branching tree with sterile individuals, the formalism of the partition 
function has been shown to apply, provided one keeps track of these individuals (with 
their mass). In this last situation, the partition function itself has been shown to possess a 
limiting behaviour, thereby making various asymptotic measures of the anisotropy of the 
mass distribution in such trees meaningful. The populations under study in this paper present 
the main advantage of possessing a large scale of mass distribution of their constituent 
elements, from macroscopic to microscopic. They should therefore serve as generic models 
of various natural phenomena (think of the size distribution of pebbles on a beach, galaxy 
clusters, porous media,. . .). This last property also suggests that we should call such objects 
‘treelike fractals’. 

These facts should be compared with the ones normally in vogue, in the overlooked field 
of multifractal analysis of singular measures [l, 2,3,5,10, 12, 14, 1-51. Intimately associated 
with these ideas is the multiplicative cascade, as nicely illustrated by multinomial [5] or 
more general measures [lo]. Normally (i.e. except in the case of advanced multifractals, 
be they random or left-sided [13]), using box-counting arguments, the partition function 
itself has no limiting behaviour. Rather, some sort of ‘thermodynamical limit’ is known 
to exist, leading to a rescaled uniform partition function [2]. This fact, together with large 
deviations arguments 11, 4, 51, allows in the ‘finite type’ cases to introduce the notion of 
the dimension spectrum [31 for these self-similar multifractal measures, which embodies all 
the asymptotic statistics of Lipschitz-Holder exponents for the limit elements. 

No such things are meaningful €or the multiplicative cascades under study in this paper, 
i.e. no renormalization of the partition function is valid; the measures are therefore not 
stricly self-similar and this is the meaning of the term ‘tree-like fractal‘ introduced before. 
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